
Introduction to Number Systems

History of the Decimal System

We sometimes take our present day number system for granted, but there was a time when
fractions, decimals, negative numbers, and zero were not recognized as commonplace
numbers!

Read the articles on the websites below and create a timeline of the history of the decimal
system. (You may want to use other websites to help you in your search!) Try to find the
following information:

● When/where was the decimal (base 10) system created?
● When/where was the number 0 first used?
● When/where were negative numbers first used?
● When/where were decimals used to represent fractions?

Add any other information that you find interesting to your timeline!

https://www.britannica.com/topic/Hindu-Arabic-numerals
http://www.csun.edu/~hbund408/math%20history/math.htm
https://nrich.maths.org/5747
https://www.scientificamerican.com/article/history-of-zero/
http://www.mathpages.com/home/kmath298.htm
https://www.britannica.com/biography/Simon-Stevin

Decimal System Basics

Let’s go back to the basics of numbers. Our number system is called the decimal or base 10
system. It has 10 single digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. After 9, we run out of single
digits and have to use two digits instead. So we add a space to the left to represent a unit of
ten and put a 1 in that space and a 0 to the right to represent zero units of one. We count the
way we normally would, and after reaching a digit of 9 in each of these two spaces (99), we add
a third space to the left with a 1 to represent a unit of a hundred and put a 0 in the tens and the
ones spaces. We continue doing this to represent larger and larger numbers.

When we look at a number like 7342, we know that each column represents a different power of
ten:

1000 = 103 100 = 102 10 = 101 1 = 100

https://www.britannica.com/topic/Hindu-Arabic-numerals
http://www.csun.edu/~hbund408/math%20history/math.htm
https://nrich.maths.org/5747
https://www.scientificamerican.com/article/history-of-zero/
http://www.mathpages.com/home/kmath298.htm
https://www.britannica.com/biography/Simon-Stevin

7 3 4 2

There are seven 1000s, three 100s, four 10s, and two 1s. We could even write an expression
using addition and multiplication to show this number:

7(103) + 3(102) + 4(101) + 2(100)

Amazingly, we can use the rules mentioned above to create a number system using any
number base we want!

Here are rules again (now for any number base other than base 10):

1. The number of the base is equal to the number of single digits (single digits can be
numbers, letters, symbols...you’ll see why in a moment). For example, in base 10, there
are 10 single digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In base 4, we would use the 4 single
digits: 0, 1, 2, 3. In base 7, we would use the 7 single digits: 0, 1, 2, 3, 4, 5, 6. What
would we use for the single digits in base 2? In base 5? What if we wanted to use
a base higher than 10? What issue do we have?

2. Once we have our list of single digits, we use a space system similar to our regular base

10 system. We place a single digit in each space. The rightmost space represents
units of ones.

The space to the left of that represents units of the base. In base 10, that would be
units of ten. In base 4, that would be units of 4. In base 18, that would be units of 18.

The space to the left of that represents units of the base squared. In base 10, that
would be units of a hundred. In base 4, that would be units of 16. In base 18, that would
be units of 324.

The space to the left of that represents units of the base cubed. And as we move
further to the left, the power of the base increases.

So why did the decimal system become the most popular and widely-used number system? It
likely comes from the fact that we are used to counting to units of ten on our fingers. And how
are other number systems useful? We are going to be exploring two different number
systems that are used extensively in the field of computer science: Binary and Hexadecimal.

In the next several sections, we will learn how to convert between Binary, Decimal,
Hexadecimal, and other number systems. We will program several converters, which will
automatically take numbers and convert them to different number systems. We will learn how

computers use binary and hexadecimal to store information, and the basics of image storing
and processing.

Binary

Binary, as you may have already have guessed, is a number system with base 2. Since it is
base 2, it uses the two single digits 0 and 1. Each column/space in a binary number will contain
either a 1 or a 0 and will represent a power of the base 2.

Converting from Binary to Decimal: suppose we wanted to see what the binary number
1100100 is as a decimal number, we could write out the following table:

26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

1 1 0 0 1 0 0

Using our table, we see that 1100100 = 1(26) + 1(25) + 0(24) + 0(23) + 1(22) + 0(21) + 0(20) = 64 +
32 + 4 = 100.

Converting from Decimal to Binary: suppose we want to convert a decimal number like 219
into a binary number. Discuss with your group members how you might do this.

It might be easier to think about smaller numbers first. For example, let’s try counting in binary.
The first 20 decimal numbers are listed. What are their binary representations? What multiples
of powers of 2 are we adding together? The first several are done for you.

Decimal Binary Mutiples of Powers of 2

0 0 0

1 1 1(1)

2 10 1(2) + 0(1)

3 11 1(2) + 1(1)

4 100 1(4) + 0(2) + 0(2)

5 101 1(4) + 0(2) + 1(1)

6 110 1(4) + 1(2) + 0(1)

7 111 1(4) + 1(2) + 1(1)

8

9

10

11

12

13

14

15

16

17

18

19

20

To convert 219 into a binary number, think about how we write numbers in decimal. We find the
largest power of ten that goes into the number, write that first, and then deal with whatever is left
over. For example, 100 is the largest power of ten that goes into 219. It goes in twice, so we
write a 2 in the hundreds place. What is left over is 19, and 10 is the largest power of ten that
goes into 19. It goes in once, so we write a 1 in the tens place. What is leftover is 9, and we
write that single digit in the ones place.

We can do the same thing for converting a decimal to binary. We think of the largest power of
2 that goes into 219, which would be 27 = 128. Then we divide 219 by 128 and get 1 with a
remainder of 91 left over. This means we want to put a 1 in the 27 column as shown in the
table. Then we continue with our remainder.

The largest power of 2 that goes into 91 is 26 = 64. 91 divided by 64 is 1 with 27 left over. We
put a 1 in the 26 place and continue with 27. The largest power of 2 that goes into 27 is 24 = 16.
27 divided by 16 is 1 with 11 left over. The largest power of 2 that goes into 11 is 23 = 8. 11
divided by 8 is 1 with remainder 3. The largest power of 2 that goes into 3 is 21 = 2. 3 divided
by 2 is 1 with remainder 1. The largest power of 2 that goes into 1 is 20 = 1, and 1 divided by 1
is one with remainder 0. Once we reach a remainder of 0 in this process we are done! Now we
want to list the digits in order. Notice that we skipped some powers of 2. There will need to be
0s in these spaces. Note that in all the other cases, the powers of 2 only go into our numbers
once, so all the other places have digits of 1. So we get

27 = 128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

1 1 0 1 1 0 1 1

And we see that 219 in decimal is the same as 11011011 in binary!

With your group members complete the “Binary to Decimal” and “Decimal to Binary”
portions of your worksheet.

Hexadecimal

The word “hexadecimal” might have some roots that you recognize: “hex” means six and “dec”
means ten, so hexadecimal is a number system with base 16. Since it is base 16, we need 16
single digits in our number system. We already have ten if we use 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,
but we still need six more! Any single symbol will work for the remaining six, but let’s use
something familiar, like our alphabet. So in hexadecimal the sixteen single digits we use are 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F in that order. In hexadecimal, A represents the
decimal number 10, B is 11, C is 12, D is 13, E is 14, and F is 15. (In hexadecimal, you can use
either capital letters or lowercase letters for A, B, C, D, E, and F. Just be consistent with what
you use.)

In a hexadecimal number we can have a string of any of those digits, and each space in the
number will represent a power of 16.

Converting from Hexadecimal to Decimal: suppose we want to see what the hexadecimal
number A8F2 is in decimal. Again, we create a table:

163 = 4096 162 = 256 161 = 16 160 = 1

A 8 F 2

We know that A is 10 in the decimal system, and F is 15, so A8F2 = 10(163) + 8(162) + 15(161) +
2(160) = 10(4096) + 8(256) + 15(16) + 2(1) = 43250 in the decimal system! Test yourselves by
converting the number 5DE0 to decimal.

Converting from Decimal to Hexadecimal: converting from decimal to hexadecimal is very
similar to converting binary to decimal. Let’s again try some smaller numbers first.

The first 20 decimal numbers are listed. What are their hexadecimal representations? What
powers of 16 are we adding together? Several are done for you.

Decimal Hexadecimal Multiples of Powers of 16

0 0 0(1)

1

2

3

4

5

6 6 6(1)

7

8

9

10

11

12

13

14 E 14(1)

15

16

17

18

19 13 1(16) + 3(1)

20

Now let’s look at the decimal number 987. We want to find the largest power of 16 that goes
into 987. 4096 is too large, so the largest power of 16 is 162 = 256.

Dividing 987 by 256, we get 3 with a remainder of 219. We put a 3 in the 162 to show that there
are three units of 256 in our number 987. Then we look at the remainder. The largest power of
16 which goes into 219 is 16 itself. 219 divided by 16 is 13 with a remainder of 11. Normally we
would want to put 13 in the 161 column, but remember that we have to use a single digit, so we
instead use the hexadecimal representation for 13, which is D. Now looking at the remainder
11, we see that the largest power of 16 that goes into 11 is 160 = 1. 11 divided by 1 is 11 with
remainder 0. Since we have a remainder of 0 already, we are done, and we place a B to
represent 11 in the 160 column.

162 = 256 161 = 16 160 = 1

3 D B

And we see that 987 in decimal is the same as 3DB in hexadecimal! Test yourselves by
converting the decimal number 12122 to hexadecimal.

With your group members, complete the “Hexadecimal Conversions” portion of your
worksheet.

Other Number Systems

Using the rules similar to the ones for binary and hexadecimal, we can represent numbers in
almost any number system we like. For example if we wanted to write numbers in base 4, we
would use the single digits 0, 1, 2, 3, and each place in a number would represent a power of 4.
If we wanted to write numbers in base 20, we would use the single digits 0 through 9, A, B, C,
D, E, F, G, H, I, and J. Each number place would represent a power of 20.

Eventually though, we are limited by the number of letters in the alphabet. Base 36 uses the
single digits 0 through 9 AND all the letters in the English alphabet. If we wanted to continue to
higher bases, we would have to start adding other symbols to use as single digits. Base 36 is
fun to work with because every word in the English language can be converted to a decimal
number!

With your group members, convert the following four decimal numbers into base 36 to
find the sentence that is written below. Write your answer in the box.

“27749440 1366760 1442151747 63054156628.”

With your group members, try the following challenges. Write sentences in which each
word is a base 36 number and see if you can use ONLY words that are

● Even numbers when converted to decimal.
● Odd numbers when converted to decimal.
● Multiples of 3 when converted to decimal.

Conversion Programs (Note: this Mathematica notebook requires Mathematica 10; if students
do not have access to this, the code will have to be changed)

Open the Mathematica notebook named “Converter.nb”. The notebook begins with some
guided exercises to help you understand how to use Mathematica and some Mathematica
functions. Then there are three functions: “DecToLowBase”, “DecToHighBase”, and
“BaseToDec”. The commented sections in blue (surrounded by “(*” on the right and “*)” on the
left) above each function describe what the function does. The commented sections inside the
functions tell you what kind of code to write.

For each numbered comment, write code or perform the action given by the instructions in the
comment. If you are not sure what a function does, run a Google search for the function along
with the word “Mathematica” to find the answer.

For the first function we are going to be programming the following algorithm. Divide the
decimal number by the base of the system we are converting to. Record the remainder. Take
the quotient and repeat this process until the quotient is 0. Then write the remainders
backwards. This will give you the correct number in the new number system. Convince yourself
that this algorithm works by trying it on paper with one of the decimal to binary exercises you did
above. See if the algorithm works for another base, like base 7. Try to convert 143 to base 7
using the algorithm. Does it work?

For the second function, we are going to be using the same algorithm as in the first, but this
time, some of the remainders that we want may actually be two digit numbers, and we will have
to use their letter counterparts. Think about how this should be done.

For the third function, we want to take a number input as a string, figure out the number
represented by each character, multiply by the power of the base in that column and then add
everything together.

Some vocabulary that might be helpful for you to know:

● Character: a single letter, number, or symbol that can be encoded using 1 byte (8 bits).
Characters are usually entered inside quotes (“ “)

● String: an expression containing one or more characters. String are also usually
entered inside quotes. The empty string is given by two quotes with nothing inside: “”.

Computer Data Storage and Data Transfer

Read the following article and answer the questions below with your group members.
https://www.lifewire.com/the-difference-between-bits-and-bytes-816248

Questions:

1. What are bits and bytes?
2. What is “bit” short for?
3. What numeric values can a bit have?
4. How many bits are in a byte?
5. How many bits are in an IPv4 address? How many bytes?
6. How many bits are represented in one hexadecimal digit?
7. How many hexadecimal digits are needed to represent the information in 1 byte?
8. What is one thing hexadecimal is used for?
9. Based on your reading, what do you think is the advantage of using hexadecimal over

binary?
10. Complete the section of your worksheet entitled “Numbering Systems Exam.” If there is

a term you have not encountered in your reading, look it up!

How do computers store numbers?

So far, we have seen how to write decimal numbers in binary and how to write binary numbers
as decimals, BUT all the decimal numbers we used were positive whole numbers and zero.
In the field of scientific computing, we use computers to perform very complex calculations with
ALL different kinds of numbers: whole numbers, negative numbers, and numbers with long
decimals. So, you might wonder, how does a computer use binary to store numbers that are
negative or numbers with long decimals?

In many widely-used computer languages (like C/C++ and Java), you have to actually tell the
computer what type of number you’re using before you use it. This allows the computer to
understand how to read it and how to store it and how to perform calculations. Also, computers
have a finite amount of storage, meaning we won’t be able to store all the numbers all the way
up to infinity. The largest number we are able to store will depend on the number of bits we are
allowed to use.

Below, read about the different types of numbers and answer the questions with your group
members.

https://www.lifewire.com/the-difference-between-bits-and-bytes-816248

Integers:
Integers include positive and negative whole numbers and zero. Most of the time, a computer
uses either 32 bits to store an integer (usually called an “int” or a “long”) or 64 bits (usually
called a “long long”).

In the case of 32 bits, the first bit represents the sign: “0” indicates a positive number, and “1”
indicates a negative number. The remaining 31 bits are used to indicate a whole number in
binary. What is the largest integer we could represent using this system? About how
many digits is this in decimal?

We often say that the 32-bit representation can encode numbers from -(231 - 1) to 231 - 1.
Explain where these expressions come from.

If we use 64 bits, again the first bit represents the sign, and the remaining 63 bits are used to
indicate the whole number in binary. What is the largest integer we could represent using
this system? About how many digits is this in decimal? What is the range of numbers
we can represent (use the exponential - 1 format used above)?

Numbers with Decimals:

To encode ALL types of numbers (positive/negative/decimals), computers use something called
floating point representation. Think about a scientific calculator and how it displays answers.
Each time it shows an answer, it only uses a certain number of digits. Depending on how big
the answer is and how many decimal places it has, the decimal point is going to be in different
locations (it is going to “float” around). Imagine trying to display 3.123435 or 213335.23435
using only 8 digits (the decimal point is also considered a digit in this case). For the first
number, we’ll be able to display all the digits (3.123435), but for the second, we’ll have to cut it
off after the first decimal place (213335.2). In each of these two representations, the decimal is
located in different places.

A float is the name for the 32 bit version of a floating point number. It is also sometimes called
single precision. The encoding of floating point numbers is quite different, mainly because we
are now dealing with fractions as well. In a float, there are three different groupings of bits: the
first bit tells us the sign of the number, the next 8 bits are called the characteristic or the
exponent, and the last 23 bits are called the mantissa or the significand.

The characteristic is a binary encoding of a whole number. The mantissa is a binary encoding
of a fractional value. Once we know what these are, we can use the following formula to
actually get the number:

(-1)sign(2)characteristic - 127(1 + mantissa)

Let’s look at a number as an example and then talk about where this formula comes from!

Sign Characteristic Mantissa

0 10000011 10111001000100000000000

Here we see that the sign is “0”, so this is a positive number. The characteristic is a normal
binary representation of a whole decimal number, so we see that it is 27 + 21 + 20 = 131. The
mantissa is a binary representation of descending powers of 2 (or increasing powers of ½). The
first space on the left indicates (½)1, the next space to the right is (½)2, etc. So our mantissa is

1(½)1 + 1(½)3 + 1(½)4 + 1(½)5 + 1(½)8 + 1(½)12 = 2
1 + 8

1 + 1
16 +

1
32 +

1
256 +

1
4096

Now using our formula, we have

(-1)0(2)131 - 127(1 +) = 27.566406252
1 + 8

1 + 1
16 +

1
32 +

1
256 +

1
4096

We can get the binary representation for the next largest number by simply adding a one in the
last column of the mantissa: 0 10000011 10111001000100000000000. How would you
represent the next smallest number from our example?

The actual number of bits used for the characteristic and the mantissa are actually standardized
by the IEEE (Institute for Electrical and Electronic Engineers). The question is why don’t we
actually use the characteristic to represent the whole part of our number, and the mantissa to
represent the decimal part? Why do we multiply by 2characteristic - 127 in our formula?

Can you think of reasons why we wouldn’t just want to use the characteristic to represent the
whole part of our number? Discuss with your group members.

The answer is that if we can only use 8 bits to represent the whole part of our number, that
GREATLY reduces the numbers we can represent. The highest whole number we can encode
with 8 bits is 28 - 1 = 255. We use the power of two to increase our range.

Now, why subtract 127 from the characteristic? We know that 2 raised to a positive power gives
numbers greater than 1, and 2 raised to a negative power gives numbers less than 1. Our
characteristic has a maximum value of 255. Subtracting 127 means that half of the possible
characteristic values will produce numbers greater than 1, and the other half of characteristic
values will produce numbers less than 1. So doing this basically equalizes the large and small
numbers that we are able to encode!

A double is the 64-bit version of a floating point number. It is also called double precision.
For a double, the first bit encodes the sign, the next 11 bits are the characteristic, and the last
52 bits are the mantissa. The formula for finding the decimal representation of the number is:

(-1)sign(2)characteristic - 1023(1 + mantissa)

Explain why we are now subtracting 1023.

Questions:

1. Is it possible to encode 0 in the floating point format?
2. What is the decimal representation of the 32-bit floating point number:

0 10000000 11000000000000000000000
3. What is the decimal representation of the 32-bit floating point number:

1 01111110 10000000000000000000000
4. What is the decimal representation of the 32-bit floating point number:

1 01111110 00000000000000000000001

